跳到主要内容

矩阵的范数

1. 范数

考虑函数 :Rn[0,)\Vert \cdot \Vert : \mathbb{R}^n\to \left[0,\infty\right) 满足:

  • x=0    x=0\Vert \vec x\Vert=0 \iff \vec x = \vec 0
  • cx=cxcR,xRnc\vec{x} =|c|\parallel \vec{x}\parallel \quad \forall c\in R,\vec{x}\in \mathbb{R} ^n
  • x+yx+yx,yRn\Vert\vec{x}+\vec{y}\parallel \le \parallel \vec{x}\parallel +\parallel \vec{y}\parallel \quad \forall \vec{x},\vec{y}\in \mathbb{R} ^n 则称其为范数。

[!Tip] p-范数 xp=(k=1nxkp)1p\Vert\vec x\Vert_p = (\sum_{k=1}^n \lvert x_k\rvert^p)^{\frac{1}{p}}

2. 矩阵的范数

定义矩阵的范数为 An×nnmaxxRnAxx\Vert A_{n\times n} \Vert_{n}\equiv \max_{\vec x \in \mathbb{R}^n } \frac{\Vert A\vec x\Vert}{\Vert\vec x\Vert} 对于 n=1n=1A1=maxjiaij\Vert A\Vert_1 = \max_j\sum_i\lvert a_{ij}\rvert 对于 n=2n=2A2=max{λ:AATx=λx}\Vert A\Vert_2 = \max\{\lambda:AA^T\vec x = \lambda \vec x\} 对于 n=n=\inftyA=maxijaij\Vert A\Vert_\infty = \max_i\sum_j \lvert a_{ij}\rvert

450

3. 误差估计

(A+εδA)x(ε)=b+εδb(A+\varepsilon \delta A)\vec{x}(\varepsilon) = \vec b + \varepsilon \delta \vec b

3.1 矩阵条件数

condA=AA1κ\text{cond} A = \Vert A\Vert\Vert A^{-1}\Vert \equiv \kappa

AA 不可逆,认为其条件数为无穷大。

condA=AA1AA1xx\mathrm{cond} A=\parallel A\parallel \left\| A^{-1} \right\| \ge \frac{\parallel A\parallel \left\| A^{-1}\vec{x} \right\|}{\parallel \vec{x}\parallel}

3.2 Relative change

Dδbb+δAAD\equiv \frac{\parallel \delta \vec{b}\parallel}{\parallel \vec{b}\parallel}+\frac{\parallel \delta A\parallel}{\parallel A\parallel}

进而,

x(ε)x(0)x(0)εDκ+O(ε2)\frac{\parallel \vec{x}(\varepsilon )-\vec{x}(0)\parallel}{\parallel \vec{x}(0)\parallel}\le \varepsilon \cdot D\cdot \kappa +O\left( \varepsilon ^2 \right)

450