跳到主要内容

5.1 切比雪夫不等式

1. Chebyshev 不等式

设随机变量 XX 的方差 D(X)D(X) 存在,则对于任意实数 ε>0\varepsilon>0,

P(XE(X)ε)D(X)ε2P\left(|X-E(X)| \geq \varepsilon\right) \leq \frac{D(X)}{\varepsilon^{2}}

P(XE(X)<ε)1D(X)ε2P\left(|X-E(X)| < \varepsilon\right) \geq 1-\frac{D(X)}{\varepsilon^{2}}

Proof:

P(XE(X)ε)=P((XE(X))2ε2)E((XE(X))2)ε2=D(X)ε2\begin{aligned} P\left(|X-E(X)| \geq \varepsilon\right) &= P\left((X-E(X))^{2} \geq \varepsilon^{2}\right) \\ & \leq \frac{E\left((X-E(X))^{2}\right)}{\varepsilon^{2}} \\ & = \frac{D(X)}{\varepsilon^{2}} \end{aligned}

2. 依概率收敛

Yn{Y_n} 是随机变量序列,aa 是一个常数,如果对于任意 ε>0\varepsilon>0, 有

limnP(Ynaε)=0\lim _{n \rightarrow \infty} P\left(|Y_{n}-a| \geq \varepsilon\right)=0

则称随机变量序列 Yn{Y_n} 依概率收敛于随机变量 YY,记为 YnnPaY_{n} \xrightarrow[n\to\infty]{P} a